On rank one perturbations of Hamiltonian system with periodic coefficients
نویسنده
چکیده
From a theory developed by C. Mehl, et al., a theory of the rank one perturbation of Hamiltonian systems with periodic coefficients is proposed. It is shown that the rank one perturbation of the fundamental solution of Hamiltonian system with periodic coefficients is solution of its rank one perturbation. Some results on the consequences of the strong stability of these types of systems on their rank one perturbation is proposed. Two numerical examples are given to illustrate this theory. Key–Words: Eigenvalue, symplectic matrix, Hamiltonian system, Fundamental solutions, Perturbation.
منابع مشابه
Perturbations of Mathieu Equations with Parametric Excitation of Large Period
We consider a linear differential system of Mathieu equations with periodic coefficients over periodic closed orbits and we prove that, arbitrarily close to this system, there is a linear differential system of Hamiltonian damped Mathieu equations with periodic coefficients over periodic closed orbits such that, all but a finite number of closed periodic coefficients, have unstable solutions. T...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملStability radii for real linear Hamiltonian systems with perturbed dissipation
We study linear dissipative Hamiltonian (DH) systems with real constant coefficients that arise in energy based modeling of dynamical systems. In this paper we analyze when such a system is on the boundary of the region of asymptotic stability, i.e., when it has purely imaginary eigenvalues, or how much the dissipation term has to be perturbed to be on this boundary. For unstructured systems th...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کامل